
Taylor Jacovich
PhD Student

Adviser: Dr. Alexander van der Horst
Department of Physics

George Washington University
Staughton Hall 301

707 22nd Street
Washington, DC 20057

tjacovich@gwu.edu
May 2, 2017

Design Specifications for a GRB Afterglow Distributed Computing Project

Part 1: Planning and Identifying Possible Issues

Introduction
Since the dawn of the Swift era, Gamma Ray Bursts have been recorded almost daily, with most

of these bursts receiving follow-up observations to create lightcurves and spectra. These bursts have
been repeatedly modeled using multiple methods, but no one has performed an exhaustive broadband
modeling campaign on a large portion of the available data using a single model. With recent
developments in modeling algorithms and software, now seems like an ideal time to undertake such a
campaign. The amount of data available is well beyond the reach of a single, or even small team of
researchers, but this sort of situation is perfect for enlisting the help and support of citizen-scientists.

This white paper outlines the preliminary ideas and design requirements of a distributed
computing project based on the boxfit and potentially the scalefit program used to fit GRB afterglows
using direct two-dimensional hydrodynamic simulations. The goals of this project would be to create
an efficient and parallelized code that could be run on higher-end consumer hardware or workstations
at the rate of fitting about 1 GRB afterglow per machine per day.

It would be advantageous to be able to automate data retrieval from archival sources for
afterglows given the large quantity recorded during the Swift era and the massive amount of follow-up
data provided in papers and in digital archives. To that end, we would adapt existing open data sources
to work with the boxfit algorithm, with limited to no human intervention.

To spur adoption, as well as to support science-literacy among citizen-scientists and the
population at large, We will produce a UI (User Interface) and accompanying UX (User Experience)
that is both modern, efficient, and open. This UI would have to be recognizable and usable by a
novice, and provide an accurate and informative explanation of the underlying science. This would be
coupled with interactive ligthcurves and spectra, videos/podcasts, and explanations of the
hydrodynamics among other things. Additionally, the program should allow visualization of the
observational data, as well as the most recent intermittent lightcurve fit so that modelers can see what
the program is outputting and make comments and alter the parameter space as they see fit with the
ultimate goal of fostering a community of citizen-scientists in the Afterglow community.

Current Challenges
Currently, the biggest challenge is in moving the boxfit code to one that can be compiled for use

on a CUDA enabled device. I have been toying with it in my spare time, but in order to make this
feasible, I would have to have preliminary code running for testing by the Mozilla project deadline on

Design Specifications for a GRB Afterglow Distributed Computing Project Jacovich 2

May 14th. I think I can produce this, as well as a basic website to house the code prior to submission,
but I would likely be spending most of my time on that aspect of things.

Additionally, there is the issue of importing and converting data from multiple sources and in
multiple formats, all potentially with varying units. These would need to be interpreted and converted
as necessary. For archival data, this would be a simple job of identifying the archive format, but for
researcher provided tables, this could be quite difficult. Creating a style guide for new data would be
useful, as well as providing a place where researchers can submit data to the system, but it is a lot to
expect of researchers to do all this specific work. In that instance a Machine Learning Algorithm may
be able to help, as well as a potential web portal for users to help identify data formats once the
community has been created.

As far as UI development, there are a lot of FLOSS(Free/Libre and Open Source Software)
tools that can produce a modern and intuitive UI (I am writing this on the Gnome DE using LibreOffice
as an example.) The big issue will be producing web and application layouts that are appealing and
user friendly, but also convey the information they need and bolster the impact of the underlying
science. Web design and initial promotional and communication products could be generated quickly,
but a sustained and matured web and application presence would require at least an increase and
expansion of my skill-set, but ultimately, it would be beneficial to have people with experience in these
matters.

Part 2: Design Parameters and Constraints

Efficiency of the Code
There must be a noticeable speed-up in a CUDA or OpenCL enabled boxfit versus a single-

threaded variant on reasonably modern hardware. A background process with no more than 30%
utilization of the overall system should be able to perform a proper fit within a matter of a few hours
for this to be tenable as a distributed computer system, assuming the average power on time of a home
system is around 8 hours a day. The current single threaded version puts a 100% load on a single core
for several minutes to perform one off axis iteration of lightcurve or spectra production. Timing of a
chi-squared fit must be performed.

Multiple frequencies should be able to be reasonably fitted at once to properly fit the data.
Ideally at least two frequencies should be able to be fitted so that samples can be taken both above and
below the cooling break. This will require a slight modification of the code, but I do not think it will
create a significant increase in the required calculations as boxfit seems to generate the emission of
each boxfile, and the number loaded can likely be optimized and shared memory can be used to
minimize overlap. The name of the game is parallelization and memory-management for this one.

Requirements of the Distributed and Server-Side Systems
Initially, these systems will likely be based off the BOINC API as this is a robust and well

implemented distributed computing network that hosts both SETI@home and FOLD-It@home to name
a couple of prominent examples. The documentation for implementation of CUDA and OpenCL
accelerated code is well-written and relatively simple to implement. Setting up a server to handle data
requests and ingest incoming fits is also well documented. The problem with the BOINC system is that
none of the applications are really set up for user intervention. I will not discuss the details of that here,
as those details are best saved for the discussion of the UX, but suffice it to say that we will likely
either need to build on the BOINC interface, or create our own as we go. These are details that will
need to be ironed out once the initial implementation is produced and we can see how the data needs to

Design Specifications for a GRB Afterglow Distributed Computing Project Jacovich 3

flow and what loads are placed on the control servers. Amazon web hosting may be a wise way to
begin with this.

The User Experience (UX)
The User experience must meet the following criterion:

a) It must be sufficiently intuitive and robust that even a novice can navigate the basic
functionality.

b) It must be modern and efficient such that it would not look out of place on any current operating
system. To that end, it must also be platform agnostic and open.

c) It must be sufficiently light that it can run on most consumer hardware, even if the science
objectives cannot be reasonably achieved on that hardware.

d) The web component must be equally lightweight and browser agnostic.
e) Any web page or application must contain detailed information on data acquisition and

processing, as well as how different wavelengths of light are treated.
f) There must be sufficient user interaction with visualizations of the data and the science such

that the user can feel immersed in the activity and grasp the physics through hands-on activities
g) There should educational content in several media forms including animations, videos, and

audio podcasts that provide context and continued information on the state of GRB physics
h) Branding must be unobtrusive and memorable.

A UI similar to the one implemented for Zooniverse could be helpful, or one similar to a video
game. A Steam-based distribution could potentially let this become something akin to universe
sandbox, except with a much more direct citizen-science bend. Again, we will have a better
understanding of the needs of this UI as we implement the initial code, and begin deciding the direction
to build for the community.

Ingesting Data from External Sources
Astronomical data from orbital observatories tends to be well pipelined and organized in a

methodical way. Likewise, most observations from larger observatories also tends to get the same sort
of treatment. These will be relatively easy to ingest and convert into data that can feed the computing
nodes. The challenge will be in ingesting data from more irregular sources, like from tables provided
by individual researchers or from sources like the AAVSO. The variety in data reduction and
preperation will need to be dealt with by hand initially, but scripts will quickly be developed to
minimize ingest time, and hopefully the process can be fully automated for most sources, and a
machine learning algorithm trained for the remainder.

Ultimately, we would like to produce a universal data template with the relevant metadata,
potentially in the same vein as the .fits file(It could even be the .fits file if we can manipulate it
properly) used in optical observing that contains large quantities of observing data for a given object,
and provide a methodology for saving data that would make it straightforward to ingest data into these
sorts of projects.

Design Specifications for a GRB Afterglow Distributed Computing Project Jacovich 4

Tentative Timeline for the Project

May 14, 2017 Have CUDA code operational and preliminary time data and website set.

June 2017 Demonstrate initial BOINC implementation, along with at least one complete broadband fit
Have a functioning website with an initial releases of supplementary content
Begin work on ingest code

July 2017 Have rudimentary ingest code that can reasonably feed well formatted data
Demonstrate BOINC proof of concept on limited network of local computers
Have relatively stable content release cycle
Optimize and improve CUDA code to fulfill design requirements

September/October 2017
Content release cycle finalized
Continued work on website and content
Have several afterglows that have been modeled by the networked computing nodes
Continued work on ingest code
Optimize and improve CUDA code to fulfill design requirements
Give the network a snappy name and branding

December 2017
Take the BOINC network fully online (This may be shifted depending on state of ingest)
Have website content that reflects full realization of the BOINC system or discussion of
preliminary results of the system.
Begin laying out design for desktop application
Begin laying out ways for community to contribute to ingest
Discuss ways to market the new system in cost effective (read: free) ways.
Optimize and improve CUDA code to fulfill design requirements
Begin OpenCL port

2018
Optimize and improve CUDA code to fulfill design requirements
Take BOINC network fully online
Begin alpha tests of desktop UI for beyond BOINC capabilities
Community engagement increases and sustainable growth
continue marketing and promotional activities
Produce fully interactive content for citizen-scientists to explore various aspects of GRBs and
the evolution of the afterglow
maintain multimedia content stream
Complete OpenCL port

2019/2020
Optimize and improve code to fulfill and surpass design requirements, improve on
original boxfit and scalefit code wherever possible.
Beta and full release of desktop application
finished ingest algorithm with community backup system
create forums and other spaces where users can interact and contribute
bug report system
continue with website content updates and improvements
provide statistics and pre-prints of any papers stemming from the program.

2021+
sustained output, update, and operation of the project
potential for expansion as the field grows and evolves
potential for similar open projects like it

Design Specifications for a GRB Afterglow Distributed Computing Project Jacovich 5

Final Comments
I will readily admit that I am not an expert in a lot of the items on this list, but I am passionate

about astrophysics and am excited to have a project that has the potential to reach so many people who
may be interested in science. In periods like what we are currently experiencing, now is the ideal time
to create systems like the one described above, where anyone with a desire to contribute to meaningful
research has the tools and support to do so. These methods may be adapted by use on other aspects of
physics/astrophysics or even in other scientific disciplines once they are implemented.

The project I have outlined above is ambitious, it requires not just exacting detail in the science,
but also in marketing the approach and project to the general public. It will be not just an exercise not
just in producing efficient and error free code, but in creating an ecosystem of incoming and outgoing
observational and theoretical data packaged elegantly and transparently for presentation to other
researchers and the general public. That is incredibly daunting, but also really exciting. It allows for
tackling astrophysical problems not just in a direct and scientific sense, but also for making the general
public an active participant in cutting edge science.

